A Lunch Community

Preserving Life and Enhancing Public Safety of Nuclear Power Plants for Earthquakes Along San Madrid Fault Line

1 rating: 5.0
Nuclear Power Plant Public Safety Along the San Madrid Fault Line for Earthquakes
1 review about Preserving Life and Enhancing Public Safety...

Nuclear Power Plant Public Safety Issues Along the San Madrid Fault Line

  • Jun 6, 2012
This article explains strategies for preserving life and enhancing public safety in the event of a random earthquake along the New Madrid Seismic Zone. The last earthquake and tremors in 1811-1812 lasted over a month and resulted in the loss of life and extensive property damage in states from Illinois through to Mississippi.

The difference between 1811 and now is that a greater population lives in this area alongside a considerable nuclear power plant infrastructure.  Therefore, strategies to preserve life and property need to be formulated and put into practice on a continuous basis. 1)

The states along the New Madrid Seismic Zone include Alabama, Arkansas, Illinois, Indiana, Kentucky, Mississippi, Missouri, and Tennessee. 1) Impacted reactors in these states are the subject of public safety oversight and regulatory review by the Nuclear Regulatory Commission. (NRC) These reactors include Nuclear I and II in Arkansas;  Braidwood 1 and 2 belonging to Exelon Generation in Joliet, Illinois; Dresden II and III belonging to Exelon Generation in Joliet Illinois; LaSalle I, II belonging to Exelon Generation Company in Ottawa, Illinois; Quad Cities I, II in Moline Illinois and Grand Gulf I Nuclear Station near Vicksburg, Mississippi among others. 2)

There are numerous implications for an earthquake along the San Madrid Earthquake Fault Line. These implications include civil, electrical and mechanical engineering for the infrastructure, the power grid, public safety and emergency shut down of nuclear reactors. The infrastructure includes all of the relevant roads leading into the nuclear reactor, as well as the coolant, drinking water wells, monitoring wells and piping infrastructure under the nuclear power plant.

The drinking water is a life preservation issue which impacts the local population and ecosystem directly. Monitoring wells are in place to verify that tritium levels are within predefined legal limits. In addition, the operability of these monitoring wells is a continuous concern because the public needs to be informed of unsafe tritium levels on a continuous basis both before and after an earthquake event.

The NRC’s regulations are aimed at enhancing public safety by setting forth standards for systems necessary to operate the nuclear power plant or shut it down in case of an emergency or natural exigency. These safety systems’ buried piping is subject to rigorous routine inspection and testing requirements set forth in the NRC agency regulations, as well as from standards of the American Society of Mechanical Engineers. The most recent buried pipe leaks have involved water with above-normal levels of tritium. Tritium is a mildly radioactive isotope of hydrogen which is normally measured in picocuries (trillionths of a curie) per liter.  3)

A disaster recovery plan is necessary to ensure the continued operation of the nuclear power plant in the aftermath of an earthquake. The return to normal power grid operations is a primary life preservation issue in states like Alabama, Arkansas, Illinois, Indiana, Kentucky, Mississippi, Missouri and Tennessee which abut the San Madrid Earthquake Fault Line.

The Disaster Recovery Plan sets forth the recovery scheme which includes the organizational apparatus which is empowered to move the nuclear power plants back into safe operation together with the requisite standards for returning to normal operating conditions under the Nuclear Regulatory Commission requirements. The Information Technology Information Management Strategic Plan covers Disaster Recovery and Emergency Response in the use of new commercial wireless technologies in the first response, disaster response and continuity of operations.(COOP) 4)

The Contingency Plan sets forth the requisite people in an organization empowered to act in the event of a catastrophic event like an earthquake along the San Madrid Earthquake Fault Line. In addition, the plan sets forth the various suppliers to be contacted in an emergency,  the automatic shutdown sequences and automatic event escalation to the NRC to mitigate any dangers to the public health and safety.

The automatic shutdown of a nuclear power plant during an earthquake is a top priority as a life preservation issue because damage can be mitigated by this act alone.  If the automatic shutdown features are inoperable during an earthquake- it's too late to mitigate damage to life and property.

Currently, the Agency's (NRC) near term Japan Task Force conducted a thorough review of all information relating to the Fukushima Daiichi events. The documentation of this extensive review is set forth in a comprehensive matrix and set of recommendations for strengthening nuclear safety nationwide. The thrust of the new standards is aimed at protecting the public from great harm.

The NRC staff is working on those extensive recommendations in addition to considering new nuclear power plant designs. In addition, the NRC staff overseas a very extensive effort to decommission some nuclear power plants that have not come within the Agency's rigorous public health and safety  standards of enforcement.  5)

In a Science Friday interview conducted 5-4-2012, Richard Martin the author of SuperFuel: Thorium, the Green Energy Source for the Future, explains why nuclear fission reactor designs were chosen over thorium. "We had to fight World War II, and uranium, which is much better for making bombs, took over the stage, as it were, and that's when thorium actually sort of was pushed aside." 6)

Richard Martin says that the decay rate of thorium is very slow in his work  SuperFuel: Thorium, the Green Energy Source for the Future.  Thorium is fertile meaning that it can be converted into a fissile uranium isotope according to Martin. In addition, nuclear waste issues are less of a public health concern with thorium as a green energy source according to Richard Martin.

Thorium could provide a clean, safe and potentially unlimited power source. The all important Contingency Plan and Disaster Recovery Planning sequences await the actual implementation of a liquid fuel reactor together with the commercialization of a superfuel called thorium. In the event liquid fuel reactors can be built with thorium as the green energy source of the future,  then the existing global stock of fission reactor designs may become obsolete and global decommissioning can commence more quickly at some point later this century.

Until that time, standards for the location, public safety and operation of fission reactors are in the process of a continuous re-evaluation based upon current NRC regulations and changed conditions.



4) 5)
6) 2012 /05/04 152026805

 Article first published as <a href=''>Strategies To Preserve Life For Nuclear Power Plant Facilities Along the San Madrid Earthquake Fault Line</a> on Blogcritics.
Nuclear Power Plant Public Safety Issues Along the San Madrid Fault Line Nuclear Power Plant Public Safety Issues Along the San Madrid Fault Line

What did you think of this review?

Fun to Read
Post a Comment
What's your opinion on Preserving Life and Enhancing Public Saf...?
1 rating: +5.0
You have exceeded the maximum length.
Preserving Life and Enhancing Public Safety of Nuclear Power Plants for Earthquakes Along San Madrid Fault Line
© 2014, LLC All Rights Reserved - Relevant reviews by real people.
Supercontents is part of the Network - Get this on your site
This is you!
Ranked #
Last login
Member since