Supercontents
A Lunch Community
Nuclear Fission Power Plants and Transition to ITER and Fusion Nuclear Power

Evolution of Fission to Nuclear Fusion Power and the ITER

< read all 1 reviews

Evolution of Fission to Fusion Power and the ITER

  • Jul 14, 2011
Rating:
+5
Nuclear Fission Power Plants and Transition to Fusion Nuclear Power

Currently, there are 438 nuclear power reactors in 30 countries. The IAEA
(International Atomic Energy Agency) estimates at least 60 new nuclear power
plants in the next 15 years.   1)    The current nuclear power plant technology requires very
careful planning so that nuclear power plants are not built proximate to earthquake faults
for very obvious reasons.  In addition, a nuclear power plant design requires accessible piping in
the periphery of the plant, a disaster recovery plan and extensive contingency planning and
waste disposal . The Nuclear Regulatory Commission grants licenses and predefines standards.  2)

There are two acceptable storage methods for spent fuel after it is removed from the reactor core:

Spent Fuel Pools - Currently, most spent nuclear fuel is safely stored in specially designed pools at
individual reactor sites around the country. 

Dry Cask Storage -When pool capacity is reached, licensees may move toward use of the
above-ground dry storage casks.

In the event a power company decides to close its nuclear power plant permanently, the facility
must be decommissioned by safely removing it from service.  Residual radioactivity must be
reduced to a level that permits the release of the property and termination of the operating license.

The Nuclear Regulatory Commission has strict rules governing nuclear power plant decommissioning.
These rules involve cleanup of radioactively contaminated plant systems and structures , as well as 
removal of the radioactive fuel. These requirements protect workers and the general public during
the entire decommissioning process and thereafter .  To be acceptable, decommissioning must be
completed within 60 years of the plant ceasing operations. A time beyond that would be considered
only when necessary to protect public health and safety in accordance with NRC regulations.      3)

Transitioning from the current nuclear power fission plants to ITER-Fusion Power Plants will require
a significant decommissioning effort for nuclear power plants worldwide ,  transportation of residual
nuclear waste disposal and plant customization to the ITER-Tokamak Fusion Device or its operating
equivalent.  Again, since the Tokamak Fusion Device will be quite costly to build, strict care must be
exercised in building these new devices away from earthquake zones or places where there could be
potentially extensive flooding.

The Tokamak is a device employed in nuclear-fusion research for magnetic confinement of plasma.
It consists of a complex system of magnetic fields that confine the plasma of reactive charged particles
in a hollow, doughnut-shaped container. The tokamak (an acronym from the Russian words for toroidal
magnetic confinement) was developed in the mid-1960s by Soviet plasma physicists. It produces the highest plasma temperatures, densities, and confinement durations of any confinement device.    4)

Achievements like these have led fusion science to an exciting threshold.  The long sought-after plasma
energy breakeven point describes the moment when plasmas in a fusion device release at least as much energy as is required to produce them.  The current record for energy release is held by JET, which succeeded in generating 70% of input power. Scientists have now designed the next-step device-ITER-which will produce more power than it consumes: for 50 MW of input power, 500 MW of output power will be produced.  5)

Graphene is the thinnest possible material and its strength is about 200 times stronger than steel.
Graphene conducts electricity better than any material known in the engineering art
at room temperature.  Accordingly,  graphine may be cosidered for electrical components associated with fusion energy projects.  6)    The scientific goal of the ITER project is to deliver ten times the power
consumed.  7)

"The EAST project research results will be significant for the International Thermonuclear Experiment Reactor, or ITER, in terms of basic research in engineering technology and physics," said Wan Yuanxi,
who is in charge of the project.  Wan Yuanxi said ITER will also be a full superconducting experimental
Tokamak fusion device with an advanced configuration.  The program is still in its evolving stages.

Participants include the USA, Russia, Japan,  the European Union, China, India and the Republic of Korea.   There is also a burgeoning Livermore ITER Project.  Controlled nuclear fusion is seen as an efficient way for people to generate infinite, clean energy to offset the scarcity of  oil and coal.  8)   9)

The implications of fusion power will be profound.  First, more power will be produced than consumed.
In addition, the fusion power reactor may ( in time )  be appended to a desalination water plant to reduce the cost of producing water for use by consumers.  Even solar energy is being considered as a potential means of reducing the high costs of the desalination process.  Commercializing desalination plants and  cost containment is a major research challenge for countries throughout Asia, Africa, the Middle East and even in the USA. 

Later on this century, fusion powered space vehicles may be employed to go to the moon Titan where
there is believed to be vast reserves of hydrocarbons .  A prime research goal will be to perfect
the multiplier of fuel consumed in order to create fuel produced for space travel.

These hydrocarbon rich elements are the building blocks for amino acids necessary for the formation of life. Titan's surface temperature appears to be about -178°C (-289°F). Methane appears to be below its saturation pressure near Titan's surface. Scientists believe lakes of ethane exist that contain dissolved methane. Titan's methane, through continuing photochemistry, is converted to ethane, acetylene, ethylene,  and (when combined with nitrogen) hydrogen cyanide.   10)



References:
1) http://www.invap.net/nucsnew/images/pdfs/197..._Reactors_Worldwide.pdf

2) http://www.nrc.gov/waste/spent-fuel-storage.html

3) http://www.nrc.gov/reading-rm/doc-collection...ts/decommissioning.html

4) http://encyclopedia2.thefreedictionary.com/Tokamak+design

5) http://www.iter.org/sci/beyonditer

6) http://bigthink.com/ideas/24381

7) http://www.iter.org/proj/itermission

8) http://english.cas.ac.cn

9) http://science.howstuffworks.com/fusion-reactor.htm/printable

10) http://www.solarviews.com/eng/titan.htm

Credits: First Published on Blogcritics
It should now appear at:
http://blogcritics.org/scitech/article/nucle...-plants-and-transition/
Evolution of Fission to Fusion Power and the ITER Evolution of Fission to Fusion Power and the ITER

What did you think of this review?

Helpful
6
Thought-Provoking
6
Fun to Read
6
Well-Organized
6
Post a Comment
About the reviewer
Dr Joseph S Maresca ()
Ranked #1
Dr. Joseph S. Maresca CPA, CISA      Amazon / KDP Books:   SEARCH- America's Comparative Advantage by Dr Joseph S Maresca   SEARCH- The Solar Energy Potential … more
About this topic

Wiki

Tags

Details

© 2014 Lunch.com, LLC All Rights Reserved
Lunch.com - Relevant reviews by real people.
Supercontents is part of the Lunch.com Network - Get this on your site
()
This is you!
Ranked #
Last login
Member since
reviews
comments
ratings
questions
compliments
lists